Skip to main content

What is a Pneumatic Tube Transport System?

Pneumatic Tube Transport System

The history of pneumatic tube systems can be traced back to the 1850s. The first operating system was built by engineer Josiah Latimer Clark and went into operation at the London Telegraph Office in 1853. Shorter paths for rapid transport were created: Letters, telegrams and even parcels were put in cylindrical containers and sent through the tubes. Colored markings served as identification for the various shipments.

Particularly for the stock market, it was an important and, above all, fast method of communication at that time: if messages were not delivered in a timely manner, speculators ran the risk of losing a fortune. More and more pneumatic tube systems were also used in retail trade, banks, and the chemical and automotive industries – mostly to transmit production samples to laboratories. High quality was ensured.

In the course of the 19th and 20th centuries, the air system became established in other cities besides London. Mail was sent by the Prague tube network until 2002 – the longest time an air system was used for mail deliveries. However, transport through the underground became increasingly difficult over the years. More and more disruptions occurred, individual tube sections shifted underground and maintenance work became more complicated.

The concept of a pneumatic tube system has not changed since its development many years ago: each system is powered by air. 

For carriers that need to be transported several floors upwards, compressed air is required. To transport pneumatic tube carriers to a lower floor, it is sucked in by the help of air. Horizontal transport works with both compressed air and by suction depending on the system. The pneumatic tube software is used to transmit information about the level where individual pneumatic tube stations are located as well as where to transport the individual carriers.

Most installations that operate with an air compressor use air diverters. These are usually located above the compressor and regulate whether the carrier in a pneumatic tube system is conveyed by compressed air or by suction. The air switches are thus responsible for the air compressor to change from pressure to suction and vice versa.

Several switches in the individual transport pipes ensure that the correct station is addressed. As soon as a carrier is routed to another branch of the tube, the information is transmitted via the pneumatic tube software. Frequency converters on the blower are used to prevent containers from being transported too fast. They slow down the journeys within the pneumatic tube network, preventing the carrier and its contents from being damaged.

Comments

Popular posts from this blog

What is The International Space Station?

  The International Space Station is a large spacecraft. It orbits around Earth. It is a home where astronauts live. The space station is also a science lab. Many countries worked together to build it. They also work together to use it. The space station is made of many pieces. The pieces were put together in space by astronauts.  The ISS consists of pressurized modules, external trusses, solar arrays and other components. ISS components have been launched by Russian Proton and Soyuzrockets as well as American Space Shuttles. The space station's orbit is about 220 miles above Earth. NASA and other space agencies uses the station to learn about living and working in space. The first piece of the International Space Station was launched in 1998. A Russian rocket launched that piece. After that, more pieces were added. Two years later, the station was ready for people. The first crew arrived in October 2000. People have lived on the space station ever since. Over time more pieces...

What is Cloud Seeding?

  Clouds are made up of tiny water droplets called cloud droplets. Groups of cloud droplets form water vapour (gas) or ice crystals.  Water vapour isn’t dense enough to fall to the ground as precipitation. Instead, it rises into the sky and becomes supercooled. Eventually, it condenses (turns to a liquid) around tiny particles of dust in the sky. These tiny particles are called condensation nuclei. It takes billions of these condensed water droplets to form a visible cloud.  When the water molecules are spread out, they aren’t dense enough to feel Earth’s gravity. When the molecules huddle together, they form larger, heavier droplets. Eventually, they become heavy enough to fall to the ground as precipitation.  Cloud seeding involves modifying a cloud’s structure to increase the chance of precipitation. Cloud seeding adds small, ice-like particles to clouds. Usually, silver iodide particles are used.  These particles act as additional condensation nuclei. Unatta...